Probabilistic forecasting: prediction intervals for multi-step time series forecasting

If you like  Skforecast ,  help us giving a star on   GitHub! ⭐️

Probabilistic forecasting: prediction intervals for multi-step time series forecasting

Joaquín Amat Rodrigo, Javier Escobar Ortiz
November, 2024

Introduction

When trying to anticipate future values, most forecasting models aim to predict the most likely future value, a technique known as point forecasting. While useful, it does not provide information about the model's confidence or the uncertainty associated with the prediction.

Probabilistic forecasting, as opposed to point-forecasting, is a family of techniques that allow for predicting the expected distribution of the outcome rather than a single value. This approach offers richer insights by enabling the creation of prediction intervals —ranges within which the true value is likely to fall. More formally, a prediction interval defines the interval within which the true value of the response variable is expected to be found with a given probability.

Estimating prediction intervals in forecasting is challenging, since many well-established methods for regression and one-step-ahead forecasts are not directly applicable when predicting multiple steps ahead. Additionally, there is a trade-off between two key metrics: coverage and interval width. Ideally, we want to achieve a certain level of coverage (e.g. 80%) while keeping the prediction intervals as narrow as possible and the model's prediction error as low as possible.

This document is inspired by Carl McBride Ellis (2024). Probabilistic Forecasting I: Temperature. Kaggle competition. In the competition, predictions are made one-step-ahead, meaning each prediction is generated for the next time step based on known previous values. In this adaptation, however, a multi-step-ahead approach is used, where multiple future time steps are predicted simultaneously. This method is more challenging and requires a more sophisticated model but is often necessary for real-world applications.

The task is to estimate the prediction intervals for the target variable, labeled OT, over the next 28 days. Each day, the next 24 hours are predicted, meaning 24 values are forecasted each day. This process is repeated daily for 28 days, resulting in a total of 672 predictions (28 × 24) by the end of the period. Symmetric prediction intervals with coverage levels of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 95% are estimated, and their coverage is evaluated.

Libraries

The libraries used in this notebook are:

In [1]:
# Data processing
# ==============================================================================
import numpy as np
import pandas as pd

# Plots
# ==============================================================================
import matplotlib.pyplot as plt
from skforecast.plot import set_dark_theme
from skforecast.plot import plot_prediction_intervals
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.stattools import pacf
from skforecast.plot import plot_residuals
import plotly.graph_objects as go
import plotly.io as pio
import plotly.offline as poff
pio.templates.default = "seaborn"
pio.renderers.default = 'notebook' 
poff.init_notebook_mode(connected=True)

# Modelling and Forecasting
# ==============================================================================
import skforecast
import sklearn
from sklearn.linear_model import Ridge
from sklearn.feature_selection import RFECV
from sklearn.pipeline import make_pipeline
from feature_engine.datetime import DatetimeFeatures
from feature_engine.creation import CyclicalFeatures
from feature_engine.timeseries.forecasting import LagFeatures
from feature_engine.timeseries.forecasting import WindowFeatures
from skforecast.recursive import ForecasterRecursive
from skforecast.model_selection import TimeSeriesFold
from skforecast.model_selection import bayesian_search_forecaster
from skforecast.model_selection import backtesting_forecaster
from skforecast.feature_selection import select_features
from skforecast.preprocessing import RollingFeatures

# Warnings configuration
# ==============================================================================
import warnings
warnings.filterwarnings('once')

print('Versión skforecast:', skforecast.__version__)
print('Versión sklearn:', sklearn.__version__)
Versión skforecast: 0.14.0
Versión sklearn: 1.5.1

Data

Data from an electricity transformer station was collected between July 2016 and July 2018 (2 years × 365 days × 24 hours × 4 intervals per hour = 70,080 data points). Each data point consists of 8 features, including the date of the point, the predictive value "Oil Temperature (OT)", and 6 different types of external power load features: High UseFul Load (HUFL), High UseLess Load (HULL), Middle UseFul Load (MUFL), Middle UseLess Load (MULL), Low UseFul Load (LUFL), Low UseLess Load(LULL).

Zhou, Haoyi & Zhang, Shanghang & Peng, Jieqi & Zhang, Shuai & Li, Jianxin & Xiong, Hui & Zhang, Wancai. (2020). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. 10.48550/arXiv.2012.07436. https://github.com/zhouhaoyi/ETDataset

In [2]:
# Load data
# ==============================================================================
data = pd.read_csv("https://raw.githubusercontent.com/skforecast/skforecast-datasets/main/data/ETTm2.csv")
data['date'] = pd.to_datetime(data['date'])
data = data.set_index('date')
data = data.asfreq('15min')
data = data.resample(rule="1h", closed="left", label="right").mean()
data
Out[2]:
HUFL HULL MUFL MULL LUFL LULL OT
date
2016-07-01 01:00:00 38.784501 10.88975 34.753500 8.55100 4.12575 1.26050 37.838250
2016-07-01 02:00:00 36.041249 9.44475 32.696001 7.13700 3.59025 0.62900 36.849250
2016-07-01 03:00:00 38.240000 11.41350 35.343501 9.10725 3.06000 0.31175 35.915750
2016-07-01 04:00:00 37.800250 11.45525 34.881000 9.28850 3.04400 0.60750 32.839375
2016-07-01 05:00:00 36.501750 10.49200 33.708250 8.65150 2.64400 0.00000 31.466125
... ... ... ... ... ... ... ...
2018-06-26 16:00:00 39.517250 11.45500 50.616000 12.08950 -10.64275 -1.28475 47.744249
2018-06-26 17:00:00 39.140499 11.32975 49.865250 11.84825 -10.33100 -1.35400 48.183498
2018-06-26 18:00:00 42.428501 12.85850 53.591250 13.33575 -10.95475 -1.41800 47.853999
2018-06-26 19:00:00 43.036000 12.87925 54.241250 13.33575 -10.91200 -1.41800 46.535750
2018-06-26 20:00:00 40.543500 11.16175 51.721500 11.76800 -11.22400 -1.41800 45.601625

17420 rows × 7 columns

In [3]:
# Plot target time series
# ==============================================================================
set_dark_theme()
plt.rcParams['lines.linewidth'] = 0.5
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(data['OT'], label='OT');
In [4]:
# Plot Exogenous features
# ==============================================================================
cols_to_plot = [
    'HUFL', 'HULL', 'MUFL', 'MULL', 'LUFL', 'LULL'
]
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
colors = colors[1:] + ["violet", "magenta"]    
fig, axs = plt.subplots(6, 1, figsize=(8, 8), sharex=True)
for i, col in enumerate(cols_to_plot):
    axs[i].plot(data[col], label=col, color=colors[i])
    axs[i].legend(loc='lower left', fontsize=8)
    axs[i].tick_params(axis='both', labelsize=8)
In [5]:
# Partial autocorrelation values and plots
# ==============================================================================
n_lags = 24 * 7
cols_to_plot = [
    'OT', 'HUFL', 'HULL',
    'MUFL', 'MULL',
    'LUFL', 'LULL'
]
pacf_df = []
fig, axs = plt.subplots(4, 2, figsize=(8, 6))
axs = axs.ravel()
for i, col in enumerate(cols_to_plot):
    pacf_values = pacf(data[col], nlags=n_lags)
    pacf_values = pd.DataFrame({
        'lag': range(1, len(pacf_values)),
        'value': pacf_values[1:],
        'variable': col
    })
    pacf_df.append(pacf_values)
    plot_pacf(data[col], lags=n_lags, ax=axs[i])
    axs[i].set_title(col, fontsize=10)
    axs[i].set_ylim(-0.5, 1.1)
plt.tight_layout()
In [6]:
# Top n lags with highest partial autocorrelation per variable
# ==============================================================================
n = 10
top_lags = set()
for pacf_values in pacf_df:
    variable = pacf_values['variable'].iloc[0]
    lags = pacf_values.nlargest(n, 'value')['lag'].tolist()
    top_lags.update(lags)
    print(f"{variable}: {lags}")
top_lags = list(top_lags)
print(f"\nAll lags: {top_lags}")
OT: [1, 15, 16, 14, 3, 6, 17, 13, 4, 5]
HUFL: [1, 11, 15, 19, 14, 17, 18, 12, 23, 9]
HULL: [1, 3, 2, 15, 12, 23, 11, 14, 24, 4]
MUFL: [1, 15, 11, 14, 17, 19, 12, 18, 9, 16]
MULL: [1, 3, 2, 24, 11, 15, 23, 12, 17, 4]
LUFL: [1, 2, 20, 18, 9, 17, 10, 16, 19, 21]
LULL: [1, 3, 14, 4, 18, 11, 9, 42, 19, 12]

All lags: [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 42]

The target series and the external series exhibit similar dynamics with several lagged correlations that can be used as predictors.

Feature engineering

Additional exogenous features are created based on:

  • Lagged values of the exogenous series.

  • Rolling statistics of the exogenous series.

  • Calendar features.

Warning

Throughout this document, it is assumed that the aditional series are known into the future. This means its values are known at the time of prediction allowing to use them exogenous variables in the forecasting model.

In [ ]:
# Calendar features
# ==============================================================================
features_to_extract = [
    'year',
    'month',
    'week',
    'day_of_week',
    'hour'
]
calendar_transformer = DatetimeFeatures(
    variables           = 'index',
    features_to_extract = features_to_extract,
    drop_original       = False,
)

# Lags of exogenous variables
# ==============================================================================
lag_transformer = LagFeatures(
    variables = ["HUFL", "MUFL", "MULL", "HULL", "LUFL", "LULL"],
    periods   = top_lags,
)

# Rolling features for exogenous variables
# ==============================================================================
wf_transformer = WindowFeatures(
    variables   = ["HUFL", "MUFL", "MULL", "HULL", "LUFL", "LULL"],
    window      = ["1D", "7D"],
    functions   = ["mean", "max", "min"],
    freq        = "1h",
)

# Cliclical encoding of calendar features
# ==============================================================================
features_to_encode = [
    "month",
    "week",
    "day_of_week",
    "hour",
]
max_values = {
    "month": 12,
    "week": 52,
    "day_of_week": 7,
    "hour": 24,
}
cyclical_encoder = CyclicalFeatures(
                        variables     = features_to_encode,
                        max_values    = max_values,
                        drop_original = True
                   )

exog_transformer = make_pipeline(
                        calendar_transformer,
                        lag_transformer,
                        wf_transformer,
                        cyclical_encoder
                   )
display(exog_transformer)

data = exog_transformer.fit_transform(data)
# Remove rows with NaNs created by lag features
data = data.dropna()
exog_features = data.columns.difference(['OT']).tolist()
display(data.head(3))
Pipeline(steps=[('datetimefeatures',
                 DatetimeFeatures(drop_original=False,
                                  features_to_extract=['year', 'month', 'week',
                                                       'day_of_week', 'hour'],
                                  variables='index')),
                ('lagfeatures',
                 LagFeatures(periods=[1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14,
                                      15, 16, 17, 18, 19, 20, 21, 23, 24, 42],
                             variables=['HUFL', 'MUFL', 'MULL', 'HULL', 'LUFL',
                                        'LULL'])),
                ('windowfeatures',
                 WindowFeatures(freq='1h', functions=['mean', 'max', 'min'],
                                variables=['HUFL', 'MUFL', 'MULL', 'HULL',
                                           'LUFL', 'LULL'],
                                window=['1D', '7D'])),
                ('cyclicalfeatures',
                 CyclicalFeatures(drop_original=True,
                                  max_values={'day_of_week': 7, 'hour': 24,
                                              'month': 12, 'week': 52},
                                  variables=['month', 'week', 'day_of_week',
                                             'hour']))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
HUFL HULL MUFL MULL LUFL LULL OT year HUFL_lag_1 MUFL_lag_1 ... LULL_window_7D_max LULL_window_7D_min month_sin month_cos week_sin week_cos day_of_week_sin day_of_week_cos hour_sin hour_cos
date
2016-07-02 19:00:00 33.6330 9.08900 29.874751 6.95600 3.753 0.61025 28.719500 2016 32.5440 29.017001 ... 1.2605 0.0 -0.5 -0.866025 1.224647e-16 -1.0 -0.974928 -0.222521 -0.965926 0.258819
2016-07-02 20:00:00 31.7065 7.72750 27.884500 5.63600 3.753 0.67425 29.103875 2016 33.6330 29.874751 ... 1.2605 0.0 -0.5 -0.866025 1.224647e-16 -1.0 -0.974928 -0.222521 -0.866025 0.500000
2016-07-02 21:00:00 31.8110 7.81125 27.362000 5.18025 4.435 1.42075 29.598500 2016 31.7065 27.884500 ... 1.2605 0.0 -0.5 -0.866025 1.224647e-16 -1.0 -0.974928 -0.222521 -0.707107 0.707107

3 rows × 184 columns

Forecasting intervals using bootstrapped residuals

Data partition

In [8]:
# Split train-validation-test
# ==============================================================================
end_train = '2017-10-01 23:59:00'
end_validation = '2018-04-03 23:59:00'
data_train = data.loc[: end_train, :]
data_val   = data.loc[end_train:end_validation, :]
data_test  = data.loc[end_validation:, :]

print(f"Dates train      : {data_train.index.min()} --- {data_train.index.max()}  (n={len(data_train)})")
print(f"Dates validacion : {data_val.index.min()} --- {data_val.index.max()}  (n={len(data_val)})")
print(f"Dates test       : {data_test.index.min()} --- {data_test.index.max()}  (n={len(data_test)})")
Dates train      : 2016-07-02 19:00:00 --- 2017-10-01 23:00:00  (n=10949)
Dates validacion : 2017-10-02 00:00:00 --- 2018-04-03 23:00:00  (n=4416)
Dates test       : 2018-04-04 00:00:00 --- 2018-06-26 20:00:00  (n=2013)
In [9]:
# Plot partitions
# ==============================================================================
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(data_train['OT'], label='Train')
ax.plot(data_val['OT'], label='Validation')
ax.plot(data_test['OT'], label='Test')
ax.set_title('OT')
ax.legend();
In [10]:
# Plot partitions after differencing
# ==============================================================================
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(data_train['OT'].diff(1), label='Train')
ax.plot(data_val['OT'].diff(1), label='Validation')
ax.plot(data_test['OT'].diff(1), label='Test')
ax.set_title('Differenced OT')
ax.legend();

Forecaster

In [11]:
# Create forecaster
# ==============================================================================
window_features = RollingFeatures(stats=['mean', 'min', 'max'], window_sizes=24)
forecaster = ForecasterRecursive(
                 regressor       = Ridge(random_state=15926),
                 lags            = top_lags,
                 differentiation = 1,
                 window_features = window_features,
                 binner_kwargs   = {'n_bins': 10}
             )
forecaster
Out[11]:

ForecasterRecursive

General Information
  • Regressor: Ridge
  • Lags: [ 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 42]
  • Window features: ['roll_mean_24', 'roll_min_24', 'roll_max_24']
  • Window size: 43
  • Exogenous included: False
  • Weight function included: False
  • Differentiation order: 1
  • Creation date: 2024-12-01 18:57:48
  • Last fit date: None
  • Skforecast version: 0.14.0
  • Python version: 3.12.5
  • Forecaster id: None
Exogenous Variables
    None
Data Transformations
  • Transformer for y: None
  • Transformer for exog: None
Training Information
  • Training range: Not fitted
  • Training index type: Not fitted
  • Training index frequency: Not fitted
Regressor Parameters
    {'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'positive': False, 'random_state': 15926, 'solver': 'auto', 'tol': 0.0001}
Fit Kwargs
    {}

🛈 API Reference    🗎 User Guide

Feature selection

In [12]:
# Feature selection (autoregressive and exog) with scikit-learn RFECV
# ==============================================================================
regressor = Ridge(random_state=15926)

selector = RFECV(
    estimator=regressor, step=1, cv=3, min_features_to_select=25, n_jobs=-1
)

selected_lags, selected_window_features, selected_exog = select_features(
    forecaster      = forecaster,
    selector        = selector,
    y               = data.loc[:end_train, 'OT'],
    exog            = data.loc[:end_train, exog_features],
    select_only     = None,
    force_inclusion = None,
    subsample       = 0.5,
    random_state    = 123,
    verbose         = True,
)
Recursive feature elimination (RFECV)
-------------------------------------
Total number of records available: 10906
Total number of records used for feature selection: 5453
Number of features available: 208
    Lags            (n=22)
    Window features (n=3)
    Exog            (n=183)
Number of features selected: 107
    Lags            (n=14) : [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42]
    Window features (n=2) : ['roll_min_24', 'roll_max_24']
    Exog            (n=91) : ['HUFL', 'HUFL_lag_1', 'HUFL_lag_12', 'HUFL_lag_13', 'HUFL_lag_15', 'HUFL_lag_19', 'HUFL_lag_2', 'HUFL_lag_20', 'HUFL_lag_23', 'HUFL_lag_4', 'HUFL_lag_5', 'HUFL_lag_9', 'HUFL_window_1D_mean', 'HULL', 'HULL_lag_1', 'HULL_lag_12', 'HULL_lag_14', 'HULL_lag_15', 'HULL_lag_2', 'HULL_lag_20', 'HULL_lag_21', 'HULL_lag_23', 'HULL_lag_3', 'HULL_lag_4', 'HULL_window_1D_mean', 'LUFL', 'LUFL_lag_1', 'LUFL_lag_10', 'LUFL_lag_15', 'LUFL_lag_19', 'LUFL_lag_2', 'LUFL_lag_20', 'LUFL_lag_23', 'LUFL_lag_3', 'LUFL_lag_4', 'LUFL_lag_5', 'LUFL_window_1D_mean', 'LULL', 'LULL_lag_1', 'LULL_lag_12', 'LULL_lag_13', 'LULL_lag_14', 'LULL_lag_18', 'LULL_lag_19', 'LULL_lag_20', 'LULL_lag_21', 'LULL_lag_23', 'LULL_lag_24', 'LULL_lag_4', 'LULL_lag_5', 'LULL_lag_6', 'LULL_window_1D_max', 'LULL_window_1D_min', 'MUFL', 'MUFL_lag_1', 'MUFL_lag_11', 'MUFL_lag_12', 'MUFL_lag_13', 'MUFL_lag_15', 'MUFL_lag_2', 'MUFL_lag_20', 'MUFL_lag_23', 'MUFL_lag_4', 'MUFL_lag_9', 'MUFL_window_1D_mean', 'MULL', 'MULL_lag_1', 'MULL_lag_11', 'MULL_lag_12', 'MULL_lag_13', 'MULL_lag_14', 'MULL_lag_15', 'MULL_lag_17', 'MULL_lag_19', 'MULL_lag_2', 'MULL_lag_20', 'MULL_lag_3', 'MULL_lag_4', 'MULL_lag_5', 'MULL_lag_9', 'MULL_window_1D_mean', 'MULL_window_1D_min', 'MULL_window_7D_mean', 'day_of_week_sin', 'hour_cos', 'hour_sin', 'month_cos', 'month_sin', 'week_cos', 'week_sin', 'year']
In [13]:
# Set the selected lags
# ==============================================================================
forecaster.set_lags(selected_lags)
In [14]:
# Hyperparameters search
# ==============================================================================
cv = TimeSeriesFold(
        initial_train_size = len(data.loc[:end_train, :]),
        steps              = 24,  # all hours of next the day 
        differentiation    = 1,
     )

def search_space(trial):
    search_space  = {
        'alpha': trial.suggest_float('alpha', 1e-7, 1e+3, log=True)
    }
    return search_space

results_search, frozen_trial = bayesian_search_forecaster(
                                   forecaster    = forecaster,
                                   y             = data.loc[:end_validation, 'OT'],
                                   exog          = data.loc[:end_validation, selected_exog],
                                   search_space  = search_space,
                                   cv            = cv,
                                   metric        = 'mean_absolute_error',
                                   n_trials      = 20,
                                   random_state  = 123,
                                   return_best   = True,
                                   n_jobs        = 'auto',
                                   verbose       = False,
                                   show_progress = True
                               )
best_params = results_search['params'].iloc[0]
best_lags = results_search['lags'].iloc[0]
results_search.head()
`Forecaster` refitted using the best-found lags and parameters, and the whole data set: 
  Lags: [ 1  2  3  4  5  6  9 12 15 17 20 23 24 42] 
  Parameters: {'alpha': 1.1075004417904626e-07}
  Backtesting metric: 2.3811573340717134
Out[14]:
lags params mean_absolute_error alpha
0 [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42] {'alpha': 1.1075004417904626e-07} 2.381157 1.107500e-07
1 [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42] {'alpha': 1.1602023537361842e-07} 2.381157 1.160202e-07
2 [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42] {'alpha': 1.3232531712227085e-07} 2.381157 1.323253e-07
3 [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42] {'alpha': 1.8131052405964636e-07} 2.381157 1.813105e-07
4 [1, 2, 3, 4, 5, 6, 9, 12, 15, 17, 20, 23, 24, 42] {'alpha': 6.876338479023381e-07} 2.381157 6.876338e-07

Forecasting with prediction intervals

After selecting the optimal model, including its features and hyperparameters, a backtesting process is performed using the validation set. This process generates out-of-sample residuals, which are then used to estimate prediction intervals for the test set.

In [15]:
# Backtesting on validation data to obtain out-sample residuals
# ==============================================================================
cv = TimeSeriesFold(
        initial_train_size = len(data.loc[:end_train, :]),
        steps              = 24,  # all hours of next day
        differentiation    = 1,
     )

metric_val, predictions_val = backtesting_forecaster(
                                forecaster    = forecaster,
                                y             = data.loc[:end_validation, 'OT'],
                                exog          = data.loc[:end_validation, selected_exog],
                                cv            = cv,
                                metric        = 'mean_absolute_error',
                                n_jobs        = 'auto',
                                verbose       = False,
                                show_progress = True
                              )
display(metric_val)
fig, ax = plt.subplots(figsize=(8, 3))
data.loc[end_train:end_validation, 'OT'].plot(ax=ax, label='Real value')
predictions_val['pred'].plot(ax=ax, label='prediction')
ax.set_title("Backtesting on validation data")
ax.legend();
mean_absolute_error
0 2.381157
In [16]:
# Out-sample residuals distribution
# ==============================================================================
residuals = data.loc[predictions_val.index, 'OT'] - predictions_val['pred']
print(pd.Series(np.where(residuals < 0, 'negative', 'positive')).value_counts())
plt.rcParams.update({'font.size': 8})
_ = plot_residuals(residuals=residuals, figsize=(7, 4))
positive    2457
negative    1959
Name: count, dtype: int64
In [17]:
# Store out-sample residuals in the forecaster
# ==============================================================================
forecaster.fit(y=data.loc[:end_train, 'OT'], exog=data.loc[:end_train, selected_exog])
forecaster.set_out_sample_residuals(
    y_true = data.loc[predictions_val.index, 'OT'], 
    y_pred = predictions_val['pred']
)

✎ Note

When storing new residuals in the forecaster, the residuals are binned according to the magnitude of the predictions they correspond to. Later, in the bootstrapping process, the residuals are sampled from the corresponding bin, ensuring that the distribution of the residuals is consistent with the predictions. This process allows for more accurate prediction intervals, as the residuals are more closely aligned with the predictions they correspond to resulting in better coverage with narrower intervals. For more information about how residuals are used in interval estimation visit Probabilistic forecasting: prediction intervals and prediction distribution.
In [18]:
# Intervals of the residual bins (conditioned on predicted values) and number of residuals stored
# ==============================================================================
for k, v in forecaster.binner_intervals_.items():
    print(f"{k}: {v}  n={len(forecaster.out_sample_residuals_by_bin_[k])}")
0.0: (-3.8716384676533124, -1.1238482614863585)  n=417
1.0: (-1.1238482614863585, -0.7140340975203685)  n=611
2.0: (-0.7140340975203685, -0.5147665419614711)  n=510
3.0: (-0.5147665419614711, -0.3512020918319507)  n=459
4.0: (-0.3512020918319507, -0.1987613354056137)  n=374
5.0: (-0.1987613354056137, -0.013725466918245388)  n=274
6.0: (-0.013725466918245388, 0.29437106461036644)  n=328
7.0: (0.29437106461036644, 0.7696661155396924)  n=426
8.0: (0.7696661155396924, 1.479336474696538)  n=516
9.0: (1.479336474696538, 5.6094825256755385)  n=500
In [19]:
# Distribution of the residual by bin
# ==============================================================================
out_sample_residuals_by_bin_df = pd.DataFrame(
    dict(
        [(k, pd.Series(v))
         for k, v in forecaster.out_sample_residuals_by_bin_.items()]
    )
)

fig, ax = plt.subplots(figsize=(6, 3))
out_sample_residuals_by_bin_df.boxplot(ax=ax)
ax.set_title("Distribution of residuals by bin", fontsize=12)
ax.set_xlabel("Bin", fontsize=10)
ax.set_ylabel("Residuals", fontsize=10)
plt.show();
In [20]:
# Backtesting with prediction intervals in test data using out-sample residuals
# ==============================================================================
cv = TimeSeriesFold(
        initial_train_size = len(data.loc[:end_validation, :]),
        steps              = 24,  # all hours of next day
        differentiation    = 1
     )

metric, predictions = backtesting_forecaster(
                          forecaster              = forecaster,
                          y                       = data['OT'],
                          exog                    = data[selected_exog],
                          cv                      = cv,
                          metric                  = 'mean_absolute_error',
                          interval                = [10, 90],  # 80% prediction interval
                          n_boot                  = 150,
                          use_in_sample_residuals = False,  # Use out-sample residuals
                          use_binned_residuals    = True,
                          n_jobs                  = 'auto',
                          verbose                 = False,
                          show_progress           = True
                     )
predictions
Out[20]:
pred lower_bound upper_bound
2018-04-04 00:00:00 32.748341 32.289988 33.384481
2018-04-04 01:00:00 31.947731 31.186928 33.132068
2018-04-04 02:00:00 31.052885 30.214739 33.000788
2018-04-04 03:00:00 30.108430 29.027782 32.823787
2018-04-04 04:00:00 29.229240 27.894726 32.262539
... ... ... ...
2018-06-26 16:00:00 49.968142 39.049217 56.065172
2018-06-26 17:00:00 49.287497 38.649894 56.572044
2018-06-26 18:00:00 48.319028 38.308019 56.107946
2018-06-26 19:00:00 47.041985 38.269496 55.357029
2018-06-26 20:00:00 45.751569 37.076566 54.628951

2013 rows × 3 columns

In [21]:
# Plot intervals
# ==============================================================================
plt.rcParams['lines.linewidth'] = 1
fig, ax = plt.subplots(figsize=(9, 4))
plot_prediction_intervals(
    predictions     = predictions,
    y_true          = data_test,
    target_variable = "OT",
    initial_x_zoom  = None,
    title           = "Real value vs prediction in test data",
    xaxis_title     = "Date time",
    yaxis_title     = "OT",
    ax              = ax
)
fill_between_obj = ax.collections[0]
fill_between_obj.set_facecolor('white')
fill_between_obj.set_alpha(0.3)

# Predicted interval coverage (on test data)
# ==============================================================================
def empirical_coverage(y, lower_bound, upper_bound):
    """
    Calculate coverage of a given interval
    """
        
    return np.mean(np.logical_and(y >= lower_bound, y <= upper_bound))

coverage = empirical_coverage(
    y = data.loc[end_validation:, 'OT'],
    lower_bound = predictions["lower_bound"], 
    upper_bound = predictions["upper_bound"]
)
print(f"Predicted interval coverage: {round(100 * coverage, 2)} %")

# Area of the interval
# ==============================================================================
area = (predictions["upper_bound"] - predictions["lower_bound"]).sum()
print(f"Area of the interval: {round(area, 2)}")

display(metric)
Predicted interval coverage: 81.57 %
Area of the interval: 20843.63
mean_absolute_error
0 2.871771
In [22]:
# Interactive plot
# ==============================================================================
fig = go.Figure([
        go.Scatter(name='Prediction', x=predictions.index, y=predictions['pred'], mode='lines'),
        go.Scatter(name='Real value', x=data_test.index, y=data_test['OT'], mode='lines'),
        go.Scatter(
            name='Upper Bound', x=predictions.index, y=predictions['upper_bound'],
            mode='lines', marker=dict(color="#444"), line=dict(width=0), showlegend=False
        ),
        go.Scatter(
            name='Lower Bound', x=predictions.index, y=predictions['lower_bound'],
            marker=dict(color="#444"), line=dict(width=0), mode='lines',
            fillcolor='rgba(68, 68, 68, 0.3)', fill='tonexty', showlegend=False
        )
    ])
fig.update_layout(
    title="Real value vs prediction in test data",
    xaxis_title= "Date time",
    yaxis_title= "OT",
    width=800,
    height=400,
    margin=dict(l=10, r=10, t=35, b=10),
    hovermode="x",
    legend=dict(orientation="h", yanchor="top", y=1.1, xanchor="left", x=0.001)
)
fig.show()

Estimation of multiple intervals

Prediction intervals are estimated for various nominal coverage levels—10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 95%—and their actual coverage is assessed.

In [23]:
# Prediction intervals for different nominal coverages
# ==============================================================================
nominal_coverages = [[2.5, 97.5], [5, 95], [10, 90], [15, 85], [20, 80], [30, 70], [35, 65], [40, 60], [45, 55]]
observed_coverages = []
observed_areas = []

for coverage in nominal_coverages:
    metric, predictions = backtesting_forecaster(
                            forecaster              = forecaster,
                            y                       = data['OT'],
                            exog                    = data[selected_exog],
                            cv                      = cv,
                            metric                  = 'mean_absolute_error',
                            interval                = coverage, # Nominal coverage
                            n_boot                  = 150,
                            use_in_sample_residuals = False,  # Use out-sample residuals
                            use_binned_residuals    = True,
                            n_jobs                  = 'auto',
                            verbose                 = False,
                            show_progress           = True
                         )
    observed_coverage = empirical_coverage(
        y = data.loc[end_validation:, 'OT'],
        lower_bound = predictions["lower_bound"], 
        upper_bound = predictions["upper_bound"]
    )
    observed_area = (predictions["upper_bound"] - predictions["lower_bound"]).sum()
    observed_coverages.append(100 * observed_coverage)
    observed_areas.append(observed_area)

results = pd.DataFrame({
            'Interval': nominal_coverages,
            'Nominal coverage': [coverage[1] - coverage[0] for coverage in nominal_coverages],
            'Observed coverage': observed_coverages,
            'Area': observed_areas
         })
results.round(1)
Out[23]:
Interval Nominal coverage Observed coverage Area
0 [2.5, 97.5] 95.0 93.9 33464.8
1 [5, 95] 90.0 90.1 27347.4
2 [10, 90] 80.0 81.6 20843.6
3 [15, 85] 70.0 73.9 16713.4
4 [20, 80] 60.0 64.6 13495.6
5 [30, 70] 40.0 44.6 8339.2
6 [35, 65] 30.0 33.6 6079.6
7 [40, 60] 20.0 21.8 3962.8
8 [45, 55] 10.0 11.3 1968.4

The empirical coverage of all intervals is very close to the expected coverage (nominal coverage). This indicates that the intervals are well-calibrated and that the model is capable of estimating the uncertainty associated with the predictions.

Session information

In [24]:
import session_info
session_info.show(html=False)
-----
feature_engine      1.8.1
matplotlib          3.9.2
numpy               2.0.0
optuna              3.6.1
pandas              2.2.3
plotly              5.24.1
session_info        1.0.0
skforecast          0.14.0
sklearn             1.5.1
statsmodels         0.14.3
-----
IPython             8.27.0
jupyter_client      8.6.3
jupyter_core        5.7.2
notebook            6.4.12
-----
Python 3.12.5 | packaged by Anaconda, Inc. | (main, Sep 12 2024, 18:27:27) [GCC 11.2.0]
Linux-5.15.0-1072-aws-x86_64-with-glibc2.31
-----
Session information updated at 2024-12-01 19:07

Citation

How to cite this document

If you use this document or any part of it, please acknowledge the source, thank you!

Probabilistic forecasting: prediction intervals for multi-step time series forecasting by Joaquín Amat Rodrigo and Javier Escobar Ortiz, available under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0 DEED) at https://cienciadedatos.net/documentos/py60-probabilistic-forecasting-prediction-intervals-multi-step-forecasting.html

How to cite skforecast

If you use skforecast for a publication, we would appreciate it if you cite the published software.

Zenodo:

Amat Rodrigo, Joaquin, & Escobar Ortiz, Javier. (2024). skforecast (v0.14.0). Zenodo. https://doi.org/10.5281/zenodo.8382788

APA:

Amat Rodrigo, J., & Escobar Ortiz, J. (2024). skforecast (Version 0.14.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788

BibTeX:

@software{skforecast, author = {Amat Rodrigo, Joaquin and Escobar Ortiz, Javier}, title = {skforecast}, version = {0.14.0}, month = {11}, year = {2024}, license = {BSD-3-Clause}, url = {https://skforecast.org/}, doi = {10.5281/zenodo.8382788} }


Did you like the article? Your support is important

Website maintenance has high cost, your contribution will help me to continue generating free educational content. Many thanks! 😊

Creative Commons Licence

This work by Joaquín Amat Rodrigo and Javier Escobar Ortiz is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International.

Allowed:

  • Share: copy and redistribute the material in any medium or format.

  • Adapt: remix, transform, and build upon the material.

Under the following terms:

  • Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

  • NonCommercial: You may not use the material for commercial purposes.

  • ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.