Análisis de la homogeneidad de varianza (homocedasticidad) con R


Más sobre ciencia de datos: cienciadedatos.net



Introducción


El supuesto de homogeneidad de varianzas, también conocido como supuesto de homocedasticidad, considera que la varianza es constante (no varía) en los diferentes niveles de un factor, es decir, entre diferentes grupos.

A la hora de realizar contrastes de hipótesis o intervalos de confianza, cuando los tamaños de cada grupo son muy distintos ocurre que:

  • Si los grupos con tamaños muestrales pequeños son los que tienen mayor varianza, la probabilidad real de cometer un error de tipo I en los contrastes de hipótesis será menor de lo que se obtiene al hacer el test. En los intervalos, los límites superior e inferior reales son menores que los que se obtienen. La inferencia será por lo general más conservadora.

  • Si por el contrario, son los grupos con tamaños muestrales grandes los que tienen mayor varianza, entonces se tendrá el efecto contrario y las pruebas serán más liberales. Es decir, la probabilidad real de cometer un error de tipo I es mayor que la devuelta por el test y los intervalos de confianza verdaderos serán más amplios que los calculados.

Existen diferentes test que permiten evaluar la distribución de la varianza. Todos ellos consideran como hipótesis nula que la varianza es igual entre los grupos y como hipótesis alternativa que no lo es. La diferencia entre ellos es el estadístico de centralidad que utilizan:

  • Los test que trabajan con la media de la varianza son los más potentes cuando las poblaciones que se comparan se distribuyen de forma normal.

  • Utilizar la media truncada mejora el test cuando los datos siguen una distribución de Cauchy (colas grandes).

  • La mediana consigue mejorarlo cuando los datos siguen una distribución asimétrica.

Por lo general, si no se puede alcanzar cierta seguridad de que las poblaciones que se comparan son de tipo normal, es recomendable recurrir a test que comparen la mediana de la varianza.



F-test (razón de varianzas)


El F-test, también conocido como contraste de la razón de varianzas, contrasta la hipótesis nula de que dos poblaciones normales tienen la misma varianza. Es muy potente, detecta diferencias muy sutiles, pero es muy sensible a violaciones de la normalidad de las poblaciones. Por esta razón, no es un test recomendable si no se tiene mucha certeza de que las poblaciones se distribuyen de forma normal.

El F-test estudia el cociente de varianzas \(\frac{\sigma^2_{1}}{\sigma^2_{2}}\), que en caso de que sean iguales, toma el valor 1.

El estadístico F empleado sigue una distribución de F-Snedecor: \[F=\frac{\sigma^2_{2}}{\sigma^2_{1}} \frac{\widehat{S}^{1}}{\widehat{S}^{2}} \sim F_{n_1-1, n_2-1}\]

library(ggplot2)
library(dplyr)

data("iris")
iris <- filter(.data = iris, Species %in% c("versicolor", "virginica"))

ggplot(data = iris, aes(x = Species, y = Petal.Length, colour = Species)) +
  geom_boxplot() +
  geom_point() +
  theme_bw() +
  theme(legend.position = "none")

aggregate(Petal.Length~Species, data = iris, FUN = var)
var.test(x = iris[iris$Species == "versicolor", "Petal.Length"],
         y = iris[iris$Species == "virginica", "Petal.Length"] )
## 
##  F test to compare two variances
## 
## data:  iris[iris$Species == "versicolor", "Petal.Length"] and iris[iris$Species == "virginica", "Petal.Length"]
## F = 0.72497, num df = 49, denom df = 49, p-value = 0.2637
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.411402 1.277530
## sample estimates:
## ratio of variances 
##          0.7249678

El test no encuentra diferencias significativas entre las varianzas de los dos grupos.

Test de Levene


El test de Levene se puede aplicar con la función leveneTest() del paquete car. Se caracteriza, además de por poder comparar 2 o más poblaciones, por permitir elegir entre diferentes estadísticos de centralidad :mediana (por defecto), media, media truncada. Esto es importante a la hora de contrastar la homocedasticidad dependiendo de si los grupos se distribuyen de forma normal o no.

library(car)
data("iris")
iris <- filter(.data = iris, Species %in% c("versicolor", "virginica"))
leveneTest(y = iris$Petal.Length, group = iris$Species, center = "median")

El test no encuentra diferencias significativas entre las varianzas de los dos grupos.

Test de Bartlett


Permite contrastar la igualdad de varianza en 2 o más poblaciones sin necesidad de que el tamaño de los grupos sea el mismo. Es más sensible que el test de Levene a la falta de normalidad, pero si se está seguro de que los datos provienen de una distribución normal, es la mejor opción.

data("iris")
a <- iris[iris$Species == "versicolor", "Petal.Length"]
b <- iris[iris$Species == "virginica", "Petal.Length"]
bartlett.test(list(a,b))
## 
##  Bartlett test of homogeneity of variances
## 
## data:  list(a, b)
## Bartlett's K-squared = 1.249, df = 1, p-value = 0.2637

El test no encuentra diferencias significativas entre las varianzas de los dos grupos.

Si se aplica a los 3 grupos a la vez, sí hay evidencias de que la varianza no es la misma en todos ellos. Idea que se puede intuir a partir del tamaño de la caja y bigotes del boxplot.

data("iris")

ggplot(data = iris, aes(x = Species, y = Petal.Length, colour = Species)) +
  geom_boxplot() +
  geom_point() +
  theme_bw() +
  theme(legend.position = "none")

aggregate(Petal.Length~Species, data = iris, FUN = var)
bartlett.test(iris$Sepal.Length ~ iris$Species)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  iris$Sepal.Length by iris$Species
## Bartlett's K-squared = 16.006, df = 2, p-value = 0.0003345



Test de Brown-Forsyth


Se puede encontrar dentro del paquete HH, la función hov(). Es equivalente al test de Levene cuando se emplea la mediana como medida de centralidad.

# Este paquete da problemas para instalarlo en entornos linux
library(HH)
hov(iris$Sepal.Length ~ iris$Species)



Test de Fligner-Killeen


Se trata de un test no paramétrico que compara las varianzas basándose en la mediana. Es también una alternativa cuando no se cumple la condición de normalidad en las muestras.

data("iris")
a <- iris[iris$Species == "versicolor","Petal.Length"]
b <- iris[iris$Species == "virginica","Petal.Length"]
fligner.test(x = list(a,b))
## 
##  Fligner-Killeen test of homogeneity of variances
## 
## data:  list(a, b)
## Fligner-Killeen:med chi-squared = 1.2624, df = 1, p-value = 0.2612



Conclusión


Si se tiene seguridad de que las muestras a comparar proceden de poblaciones que siguen una distribución normal, son recomendables el F-test y el test de Bartlet, pareciendo ser el segundo más recomendable ya que el primero es muy potente pero extremadamente sensible a desviaciones de la normal. Si no se tiene la seguridad de que las poblaciones de origen son normales, se recomiendan el test de Leven utilizando la mediana o el test no paramétrico Fligner-Killeen que también se basa en la mediana.

Información sesión


sesion_info <- devtools::session_info()
dplyr::select(
  tibble::as_tibble(sesion_info$packages),
  c(package, loadedversion, source)
)



Bibliografía


OpenIntro Statistics: Fourth Edition by David Diez, Mine Çetinkaya-Rundel, Christopher Barr

Handbook of Biological Statistics by John H. McDonald



¿Cómo citar este documento?

Análisis de la homogeneidad de varianza (homocedasticidad) por Joaquín Amat Rodrigo, disponible con licencia CC BY-NC-SA 4.0 en https://www.cienciadedatos.net/documentos/9_homogeneidad_de_varianza_homocedasticidad.html


¿Te ha gustado el artículo? Tu ayuda es importante

Mantener un sitio web tiene unos costes elevados, tu contribución me ayudará a seguir generando contenido divulgativo gratuito. ¡Muchísimas gracias! 😊


Creative Commons Licence
Este material, creado por Joaquín Amat Rodrigo, tiene licencia Attribution-NonCommercial-ShareAlike 4.0 International.

Se permite:

  • Compartir: copiar y redistribuir el material en cualquier medio o formato.

  • Adaptar: remezclar, transformar y crear a partir del material.

Bajo los siguientes términos:

  • Atribución: Debes otorgar el crédito adecuado, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puedes hacerlo de cualquier manera razonable, pero no de una forma que sugiera que el licenciante te respalda o respalda tu uso.

  • NoComercial: No puedes utilizar el material para fines comerciales.

  • CompartirIgual: Si remezclas, transformas o creas a partir del material, debes distribuir tus contribuciones bajo la misma licencia que el original.